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Abstract:  

We study mixed fractional derivative  of functions of two variables in weighted Hölder spaces of different 

orders in each variable. The obtained results extend the well-known theorem of Hardy-Littlewood for the 

one-dimensional fractional derivative to the case of mixed Hölderness. 
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1. Introduction 

 

The mapping properties of the one-dimensional 

fractional Riemann-Liouville operator 

      ,*11 xftxfIa





  ax  , are well studied 

both in weighted Hölder spaces oe in generalized 

Hölder spaces. A non-weighted statement on the 

action of the fractional integral operator from 
0H  

into 
0H  is due to Hardy and Littlewood ([1], see 

[6], Theorems 3.1 and 3.2), and it is known that the 

operator 
aI  with 10   establishes an 

isomorphism between the Hölder spaces  ],[0 baH  

and  ],[0 baH   of functions vanishing at the point 

ax  , if 1 . The weighted results with power 

weights were obtained in [6] (see Theorems 3.3, 3.4 

and 13.13). For weighted generalized Hölder spaces 

 
0H  of functions   with a given dominant of 

continuity modulus of  , mapping properties in the 

case of power weight were studied  see [4], [5], [7], 

see also their presentation in [6], Section 13.6. 

Different proofs were suggested in [2], [3], where 

the case of complex fractional orders was also 

considered, the shortest proof is given in [2]. A 

detailed review of these and some other similar 

results can be found in [6].  

In the multidimensional case, the statement about 

the properties of a map in Hölder spaces for a mixed 

fractional Riemann – Liouville integral was studied 

in [8], [9], [12], [15], [16], [17], [18]. When 

weighted generalized Hölder spaces see [13], [14]. 

Mixed fractional derivatives were not studied in the 

weighted Hölder spaces.  Mixed fractional 

derivatives were studied when non-weighed Hölder 

spaces see [9], [10], [11], [12], [18]. This paper is 

devoted to the study of the properties of a map in 

weighted Hölder spaces.  

We consider the operator mixed fractional 

derivatives in the rectangle 

  dybxyxQ  0,0:, . 

 

2. Preliminaries 

 

2.1.Notation and a technical lemma.  

 

For a continuous function  yx,  on R
2,
 we 

introduce the notation 

     yxyhxyxh ,,,
0,1









 , 

     yxyxyx ,,,
1,0









 , 

         yxyhxyxyhxyxh ,,,,,,

1,1









 

so that 
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   (2) 

Everywhere in the sequel by 21,, CCC  etc., we denote 

positive constants which may different values in 

different occurrences and even in the same line. 

We introduce two types of mixed Hölder spaces by 

the following definitions. 

Definition 1. Let ]1,0(,  . We say that  QH  ,

if  

    
 2122112211 ,, yyCxxCyxyx  (3) 

for all     Qyxyx 2211 ,,, . Condition (3) is equivalent 

to the coupe of the separate conditions 

    


 
















 ||,,||, 2

1,0

1

0,1

CyxhCyxh   (4) 

uniform with respect to another variable. By  QH ,
0  

we define a subspace of functions  QHf  , , 

vanishing at the boundaries 0x  and 0y  of Q . 

Let 0  and\or 0 . We put    QLQH 0,0  and 
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Definition 2. We say that    QHyx  ,~
, , where 

]1,0(,  , if 

 QH  ,  and   ., 3,

1,1


 







 hCyxh  

We say that  QH  ,
0

~
, if    QHyx  ,~

,  and 

    00,,0  xy . 

These spaces become Banach spaces under the 

standard definition of the norms: 
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Note that 

     


 










1
,

1,1
, , hCyxQH h  (5) 

for any ]1,0[ , where 
 

1
212 CCC , so that 

      QHQHQH 



 ,,1,

10

~~
     (6) 

where   stands for the continuous embedding and 

the norm for   QH 



1,

10

~
  is introduced as the 

maximum in   of norms for   QH  1,~
. Since 

]1,0[ is arbitrary, it is not hard to see that the 

inequality in (5) is equivalent (up to the constant 

factor С ) to 

   
 








 hCyxh min,,

1,1

.       (7) 

We will also make use of the following weighted 

spaces. Let  yx,  be a non-negative function on Q

(we will only deal with degenerate weights 

     yxyx  , ). 

Definition 3. By   ;, QH  and   ;
~ , QH  we denote 

the spaces of functions  yx,  such that  QH  , , 

 QH  ,~
, respectively, equipped with the norms 

       QHQHQHQH  
 ,,,, ~

;
~

;
, . 

By      ,
0

,
0 ; HQH  and      ,

0
,

0

~
;

~
HQH  we 

denote the corresponding subspaces of functions   

such that 000   yx . 

Below we follow some technical estimations 

suggested in [2] for the case of one-dimensional 

Riemann-Liouville fractional integrals. We denote 

 
   

     





11
,

,,
,;,

sytxst

styx
styxB ,       (8) 

where dysbxt  0,0,1,0  and 

 
   

   





11 ,
txt

tx
txB    

   

   





12 ,
sys

sy
syB .  (9) 

In the case      yxyx  ,  we have 

     
 

 

 

  






1

2

1

1
21

,,
,,,;,

tx

syB

sy

txB
syBtxBstyxB . 

Let also 

     txBthxBthxD ,,,, 111  , 0],,0[,,  hbhxxt , 

     syBsyBsyD ,,,, 222  , 0],,0[,,  dyys . 

Lemma 1. (see [2]). Let    xx , 1R , 10  . 

Then 

 
 

 














txtt

x
CtxB

1
,

0,1max

1        (10)   

 
 

  














txthxt

h

t

x
CthxD

0,1max

1 ,, .  (11) 

 

Similar estimates hold for  syB ,2  and  syD ,,2   with 

   yy . 

Remark 1. All the weighted estimations of 

functional integrals in the sequel are based on 

inequalities (10)-(11). Note that the right-hand sides 

of these inequalities have the exponent  0,1max  , 

which means that in the proof, it suffices to consider 

only the case 1 , evaluations for 1  being the 

same as for 1 . 

 

2.2. A one-dimensional statement 

 

The following statement is known (see the 

presentation of this proof in [6], p. 190); a shorter 

proof was given in [2]. Nevertheless, we recall the 

scheme of the proof from [2] to make the 

presentation easier for the two-dimensional case. 

Let  x  the weight function and put it      xxx   

     ];,0[0 bHx . Evidently    ],0[ bHx   and 

  00  . It is easy to see that 

        xJxIxI  






 000 ,       (13) 

where   
 

    





x

dtttxBxJ

0

10 ,
1

so that in (13) we 

have the farctional integral if 10   and the 

fractional derivative if 01  .  
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The representation (13) for the fractional (integral) 

derivative shows that the estimate for the continuity 

modulus in the weighted case reduces to two simpler 

estimates: 

1) the known non-weighted estimate of Hardy-

Littlewood for fractional integral and fractional 

derivative; 

2) the estimate of the second term in (13), which is 

the main part of the job. 

Theorem 1. Let 10  ,    xx  and    Cxx  

with  1 . Then the operator     ]1,0[0


  HxJ  , 

1 and     xxCxJ
x

 






]1,0[
0 sup . 

Proof. In the proof, we use the following notation 

         hxFhxFxJhxJ ,, 2100  



 ,  (14) 

where 
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,,,

0

2

1











x
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x

dttthxDhxF

dttthxBhxF

         (15) 

The estimate of 1F  the case 11  . The estimate 

(10)  txB ,  implies 
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where 

   





0

10
1 1sup dCC . 

The estimate of 2F  in the case 11  . Applying 

the estimate (11) for  thxD ,, , we obtain 
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where 

  





 










1

0

1

10
2

11
sup

d
CC . 

 

3. Main result 

 

The Riemann – Liouville mixed fractional 

integration operator has a form 

  
   

 

    











yx

sytx

dtdsst
yxI

0

11

0

,
0,0

,1
, ,   (15) 

where 0, yx , 1,0  . 

The corresponding mixed fractional differentiation 

operators are introduced in the Marchaud form 

  
   

 







 









yx

yx
yx

,

11

1
,D ,

0,0  

   

   
0,0,

,,

0

11

0












  

yxdtds
sytx

styx
yx

    (16) 

in the case 1,0  . 

The definition in the Marchaud form may be used 

for all 1,1  : if 0,   (16) gives the mixed 

fractional derivative, if 0,  , it is mixed fractional 

integral. 

We shall use the united notation 




















1,0if,D

1,0if,

,
0,0

,
0,0,

0,0

I
J           (17) 

 

Let      yxyx  ,  be the weight function and put 

     yxyxyx ,,,  ,    


;,
,

0 QHyx . Evidently 

 QH  ,  and   0, 0,0   yxyx . It is easy to see 

that 

        yxKCyxJyxJ ,,, ,
0,0

,
0,0

,
0,0  






 ,  (18) 

1,1  , where C=const and  

       



yx

dtdsststyxByxK

00

,
0,0 ,,;,, ,     (19) 

so that in (18) we have the mixed frational integral if 

1,0  and the mixed fractional derivative if 

0,1  . 

The representation (13) for the fractional (integral) 

derivative shows that the estimate for the continuity 

modulus in the weighted case reduces to two simpler 

estimates: 

1) the known non-weighted estimate of Hardy-

Littlewood for mixed fractional integral (see [8], [9], 

[12], [15], [16]) and mixed fractional derivative (see 

[9], [10], [11], [12]); in the case weighted estimated 

of Hardy-Littlewood for mixed fractional integral 

(see [8]); 

2) the estimate of the second term in (18), which is 

the mixed fractional derivative. It is the main part of 

the job. 

Let 

   yxyx, ,     1 ,  1 .     (16) 
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Theorem 2. Let  1,0,  ,  1,0,   ,    yxyx,

and    yCxyx,  with  1 ,  1 .  Then 

the operator 


,
0,0K  is bounded from the space 

  ,
0

~
H  into  ,

0

~
H . 

Proof. To estimate the term   yxK ,,
0,0 
 , we note 

that the weight being degenerate, we have 
                    
      .

,,

syt

txssytxstyx




 

This leads to the following representation 
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where the notation (9) has been used. For the 

difference      yxGyxGyhxG h ,,, 2

0,1

22 







  with 

0h  and  bhxx ,0,  , we have 
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Hence, by estimates for 1F  and 2F  from Theorem 1, 

we have 

  







 hCyxGh 12

0,1

, . 

The estimate 

  
 








 22

1,0

, CyxG  

is symmetrical obtained. 

For the mixed difference  yxGh ,2,

1,1









   with 0, h  

and ],0[, bhxx  , ],0[, dyy   the appropriate 

representation leading to the separate evaluation in 

each variable without losses in another variable is as 

follows: 
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We omit the details of evaluation of each term in the 

above representation; it is standard via Lemma 1 and 

yields 

  
 










 hСyxGh 32,

1,1

, . 
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This completes the proof. 
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